谷氨酸棒杆菌CorynebacteriumglutamicumATCC14308-西奈青霉SHMCCD64185=NHL2894-赖氏毛壳SHMCCD64864
重组恒河猴VEGF R2蛋白的开发,为研究非人灵长类动物模型中的血管生成机制提供了独特的实验工具。
在生物医学研究中,Recombinant Human APLN Protein, hFc Tag(重组人类阿片样肽/肾上腺髓质素样肽,带人IgG Fc标签)是一种重要的研究工具,广泛应用于心血管健康和代谢调节的研究中。APLN(阿片样肽/肾上腺髓质素样肽)是一种内源性肽激素,主要在心脏和血管系统中发挥作用,对心血管健康和代谢调节具有重要影响。 结构与功能 APLN 是一种由 59 个氨基酸组成的多肽,分子量约为 7 kDa。它包含一个信号肽和一个成熟的活性肽。重组人类 APLN 蛋白通过基因工程技术在宿主细胞中表达,并带有 hFc 标签,便于纯化和检测。APLN 的主要功能包括: 心血管调节:APLN 能够调节血管的舒张和收缩,降低血压,改善心血管功能。它通过激活其受体 APJ,调节血管内皮细胞的活性,促进血管舒张。 代谢调节:APLN 参与调节能量代谢,影响脂肪细胞的脂解和葡萄糖摄取。它还能够调节胰岛素敏感性,对维持代谢平衡具有重要作用。 抗炎作用:APLN 具有抗炎特性,能够减轻炎症反应,对维持心血管健康具有积极作用。
FGF-4通过与细胞表面的受体结合,激活一系列下游信号通路,促进细胞的增殖和分化。
白细胞介素 - 18(IL - 18)是一种重要的免疫调节细胞因子,在大鼠的免疫系统中发挥着关键作用。它最初被发现具有促进干扰素 - γ(IFN - γ)产生的能力,因此也被称为IFN - γ诱导因子。IL - 18主要由巨噬细胞、树突状细胞和内皮细胞产生,参与调节免疫细胞的活化、增殖和细胞因子的分泌。 IL - 18的生物学功能 IL - 18在大鼠免疫系统中具有多种生物学功能。它能够促进自然杀伤细胞(NK细胞)和T细胞产生IFN - γ,增强细胞介导的免疫反应。此外,IL - 18还能与IL - 12协同作用,进一步促进Th1细胞的分化和活化,从而增强机体对细胞内病原体的清除能力。在炎症反应中,IL - 18通过诱导促炎细胞因子的产生,如TNF - α和IL - 1β,发挥重要的调节作用。 重组大鼠IL - 18的应用 重组大鼠IL - 18是通过基因工程技术生产的,具有与天然IL - 18相似的生物活性。它在研究中被广泛用于探索IL - 18在免疫反应中的具体作用机制。
重组人PEDF蛋白通常在大肠杆菌或哺乳动物细胞中表达,纯度可达95%以上。
在荧光定量PCR(qPCR)实验中,探针法因其高特异性和高灵敏度而备受青睐,尤其适用于需要精确检测目标基因的实验场景。然而,某些qPCR仪器(如部分ABI系列)需要高浓度的ROX参考染料来校正孔间荧光信号的差异,以确保定量的准确性和重复性。为此,Probe qPCR Mix (2×, High ROX)应运而生,它为这些特定需求提供了完美的解决方案。 高浓度ROX的重要性 ROX参考染料在qPCR实验中扮演着关键角色,它能够校正由于仪器荧光检测系统的波动、反应体系的差异以及孔间位置的差异所导致的非特异性荧光信号。对于某些qPCR仪器,高浓度的ROX是实现精准定量的必要条件。Probe qPCR Mix (2×, High ROX)中的ROX浓度经过精确调整,能够满足这些仪器对高浓度ROX的需求,从而有效提高定量的准确性和重复性。 产品特点 优化的反应体系:Probe qPCR Mix (2×, High ROX)含有优化的反应缓冲液、dNTPs、Mg²⁺、热启动Taq DNA聚合酶以及其他必要的成分。
这种同源性表明 PRP 可能在某些生理功能上与 PACAP 相似,但 PRP 也有其独特的生物学特性
Recombinant Biotinylated Cynomolgus Siglec-15(生物素标记的食蟹猴Siglec-15蛋白)是一种经过特殊修饰的重组蛋白,为研究免疫调节、肿瘤免疫微环境以及相关疾病机制提供了重要的工具。Siglec-15是一种免疫调节分子,主要表达于髓系细胞(如巨噬细胞、树突状细胞)和某些肿瘤细胞表面,参与调节免疫细胞的激活、细胞间信号传导以及免疫耐受。 Siglec-15通过与细胞表面的唾液酸化糖链结合,传递抑制性信号,调节免疫细胞的活化状态。在肿瘤微环境中,Siglec-15的高表达与免疫抑制密切相关。肿瘤细胞通过高表达Siglec-15,与免疫细胞表面的唾液酸化糖链结合,抑制免疫细胞的激活和功能,从而促进肿瘤的免疫逃逸。因此,Siglec-15被认为是肿瘤免疫治疗的潜在靶点。 生物素标记技术为Siglec-15的研究提供了强大的支持。
Biotinylated Mouse GUCY2C还可用于研究GUCY2C与其配体的相互作用。
在生物体的分子世界中,核糖核酸酶H(RNase H)是一种具有独特功能的酶,它专门识别并切割DNA-RNA杂交体中的RNA链,因此被誉为DNA-RNA杂交体的“拆解专家”。 RNase H广泛存在于生物体内,从细菌到人类细胞中都有其身影。它是一种内切酶,能够特异性地识别DNA-RNA杂交双链中的RNA部分,并在RNA链上切割磷酸二酯键。这种酶的活性对于维持细胞内的核酸代谢平衡至关重要。在细胞的DNA复制和修复过程中,RNase H发挥着不可或缺的作用。例如,在DNA复制过程中,RNA引物被合成以启动DNA链的合成,而RNase H则负责移除这些RNA引物,以便DNA聚合酶能够继续合成DNA链,从而确保DNA复制的顺利进行。 此外,RNase H在转录偶联修复(TCR)过程中也扮演着重要角色。当DNA损伤发生在正在转录的基因中时,RNA聚合酶可能会停滞在损伤位点。此时,RNase H能够移除RNA聚合酶前方的RNA-DNA杂交体,从而为DNA修复酶提供空间,促进损伤的修复。这一过程对于维持基因组的稳定性和细胞的正常功能至关重要。 在分子生物学研究中,RNase H也被广泛应用于各种实验。
这种异常表达使得GPC3成为极具潜力的癌症治疗靶点,同时也为癌症的早期诊断提供了新的标志物。
MARK(Microtubule Affinity-Regulating Kinase) 是一种微管相关蛋白激酶,主要参与调节微管的动态稳定性和细胞骨架的重组。MARK激酶通过磷酸化其底物蛋白,影响细胞的形态、运动和信号传导。因此,MARK底物(MARK Substrate) 在细胞生物学中具有重要的研究价值。 MARK激酶的功能 MARK激酶是一类丝氨酸/苏氨酸蛋白激酶,主要作用于微管相关蛋白(MAPs),如tau蛋白和MAP2。这些蛋白在维持微管的稳定性和细胞骨架的完整性中发挥关键作用。MARK激酶通过磷酸化这些底物蛋白,调节它们与微管的结合能力,从而影响微管的动态平衡。 在神经系统中,MARK激酶的活性与神经退行性疾病密切相关。例如,在阿尔茨海默病(AD)中,MARK激酶的过度激活导致tau蛋白的过度磷酸化,进而形成神经纤维缠结,这是AD的病理特征之一。 MARK底物的生物学意义 MARK底物主要包括tau蛋白、MAP2和MAPT等微管相关蛋白。这些蛋白在细胞内的分布和功能受到MARK激酶的严格调控。
上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!